
Top of Slab Intermediate Engineering Request Form

To provide you with the best customer and engineering services, please:

- Provide the requested Contact Information, fields 1 to 10 of page 1.
- Provide the requested Project Information, fields 1 to 27 of page 3.
- Page 4 provides description of fields related to Project Information.
- E-mail the form to **US+CA.HAC@Hilti.com** or to your local Hilti Field Representative.
- Provide any additional information such as architectural and structural drawings, clip geometry, additional sketches, etc. that may help to clarify and optimize the HAC design.

Contact Information

1. Project Name:			
2. Company Name:			
3. Project City:	4.State:		
5. Contact Person:			
6. Phone Number:			
7. Email Address:			
8. Date Engineering Solution Required:			
9. Bid Date (if applicable):			
10. SAP Account (if a	pplicable):		

Top of Slab Intermediate Engineering Request Form

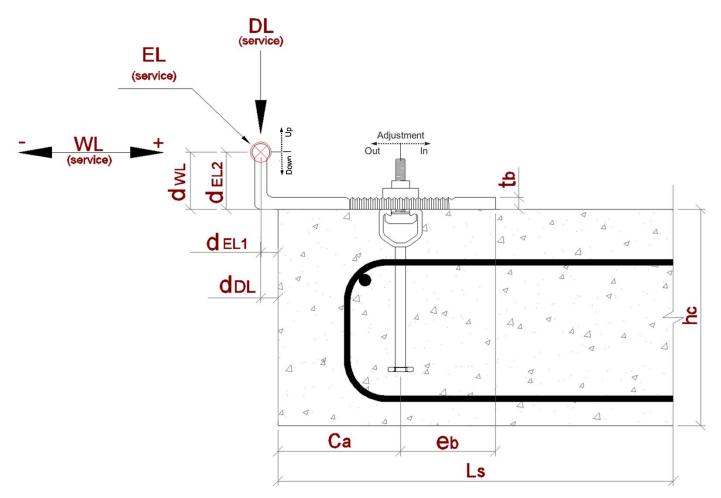


Figure 1. 0 Typical Section – Top of Slab

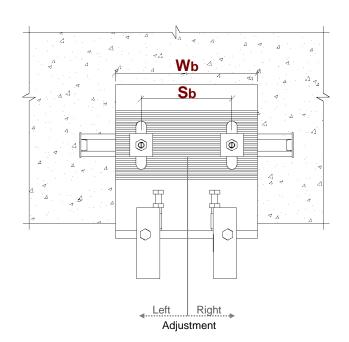


Figure 2. 0 Plan View – Top of Slab

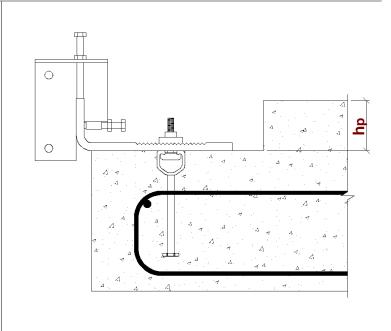


Figure 3.0 Typical Section at Pocket - Top of Slab

© 2014 HILTI

Ref. Detail:

Top of Slab Intermediate

Condition No.:

	Engineering Request Form	
Project Information	Project Name:	

Materials

- 1. Concrete Strength, f'c: psi 2. Lightweight Concrete:
- 3. Density of Concrete, p: pcf
- 4. Reinforcement Type:
- 5. Yield Strength, fy: psi
- 6. Stirrup Spacing, s: in
- 7. Stirrup Diameter, db: in

Geometry

- 8. hc: in 8b. **hp**: in (If applicable) 9. **C**a: in 10. **е**ь: in 11. Ls: 12. **t**_b: in in
- 13. **Wb**: 14. **S**b: in in
- 15. HAC Anchor Channel Adjustment
 - Left: Right:
- 16. Bracket Adjustment
 - Out: In:
- Up: in
 - Down:

Loads

- 17. Building Code with Year: 18. Cracking at Service Loads: 19. **DL**: lbs 20. **d**_{DL}: in
- 22. dwL: 21. WL-: lbs in
- 23. WL+: 24. **d**wL: lbs in
- *25. **EL**: *26. d_{EL1}: lbs in
- *27. **d**_{EL2}: *Seismic information if applicable only. in

If loads are unknown, please provide the following information:

- ft a. Floor to Floor Ht.: ft b. Mullion Centers: c. Wind Pressure: psf
- d. Wind Suction: psf
- e. Curtain Wall DL: psf

Comments:

Top of Slab Intermediate Engineering Request Form

Materials

1. Concrete Strength:

Specified compressive strength of concrete

5. Yield Strength:

Specified yield strength of reinforcement

6. Stirrup Spacing, s:

Specified center to center offset stirrup distance

Geometry

8. Thickness of the concrete member, hc:

Thickness of the concrete member where the anchor channel will be installed, typically slab (applicable to any other concrete members).

8b. Pocket Height, hp:

Distance from center of channel to edge of slab.

9. Edge Distance, Ca:

Distance from center of channel to edge of slab.

10. End Clip Distance, eb:

Distance from center of channel to the end of clip.

11. Length of Concrete Member, Ls:

Length of concrete members. This applies to narrow sections (e.g. beams, columns) only.

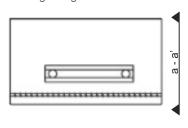
12. Thickness of Bracket, tb:

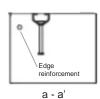
Specified thickness of bracket.

13. Width of Bracket, Wb:

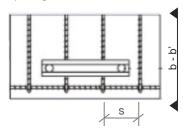
Specified width of bracket.

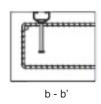
14. Bolt Spacing, Sb:


Distance from center to center of bolt.


15. HAC Anchor Channel Adjustment:

Desired lateral adjustment provided by the HAC Anchor Channel. The minimum distance of 1" shall be keep from the end of the bolt to the end of the channel.


4. Reinforcement Type:


Straight edge reinforcement – anchor channel in concrete with straight edge reinforcement:

Reinforcement with stirrups – anchor channel in concrete with edge reinforcement and stirrups with a spacing "s":

16. Bracket Adjustment:

Provide the horizontal adjustment provided by the bracket.

Loads

17. Building Code with Year:

Provide the Building Code used for the design and analysis of the project.

18. Cracking at Service Loads:

Specify if analysis indicates cracking of concrete at service load levels. If unknown, cracked concrete will be assumed.

19. Service Dead Load, DL:

Unfactored dead load. Loads will be factored based on Load and Resistance Factor Design (LRFD also known as Strength Design), unless noted otherwise.

20. Dead Load Distance, dDL:

Horizontal distance from the slab edge to the resultant dead load.

21 & 23. Service Wind Load, WL:

Maximum and minimum unfactored wind loads. Loads will be factored based on Load and Resistance Factor Design (LRFD also known as Strength Design), unless noted otherwise.

22 & 24. Wind Load Distance, dWL:

Horizontal distance from the center plane of the anchor channel to the resultant wind load.

25. Service Earthquake Load, EL:

Unfactored earthquake load. Loads will be factored based on Load and Resistance Factor Design (LRFD also known as Strength Design), unless noted otherwise.

26. Earthquake Load Distance, dEL1:

Horizontal distance from the slab edge to the resultant earthquake load.

27. Earthquake Load Distance, dEL2:

Vertical distance from the slab to the resultant earthquake load.

Hilti 5400 S. 122nd E. Ave Tulsa, OK 74146 Phone: 1-800-879-8000 Fax: 1-800-879-7000 Email: US+CA.HAC@Hilti.com www.us.hilti.com/hac-anchor-channel