

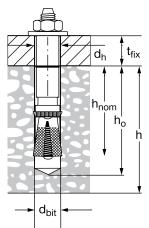
Les pages suivantes sont tirées du volume 2 du Guide technique des produits Amérique du Nord de Hilti : Chevillage, édition 17.

Pour connaître tous les détails de ce produit, y compris l'élaboration des données, la fiche technique, les usages auxquels il convient, l'installation, la résistance à la corrosion ainsi que les directives relatives à l'espacement et à la distance de rive, veuillez consulter la publication complète.

États-Unis : http://submittals.us.hilti.com/PTGVol2/

Pour communiquer directement avec un membre de notre équipe au sujet de nos produits de chevillage, veuillez communiquer avec l'équipe des spécialistes du soutien technique de Hilti entre 7 h et 18 h HNC.

États-Unis : 1-877-749-6337 ou <u>HNATechnicalServices@hilti.com</u> Canada : 1-800-363-4458, poste 6 ou


<u>CATechnicalServices@hilti.com</u>

3.3.3 Chevilles pour charges élevées HSL-GR en acier inoxydable

3.3.3.1	Description du produit
3.3.3.2	Composition
3.3.3.3	Données techniques
3.3.3.4	Directives d'installation
3.3.3.5	Renseignements sur
	les commandes

Figure 1 – Spécifications des HSL-GR de Hilti

3.3.3.1 Description du produit

La cheville à expansion pour charges élevées en acier inoxydable HSL-GR est une cheville à expansion à couple contrôlé conçue pour offrir un rendement optimal dans des milieux corrosifs. Les chevilles HSL sont offertes en diamètres de filetage M10, M12, M16 et M20.

Caractéristiques du produit

- Acier inoxydable 316
- · Capacité de charge élevée
- Serrage fiable pour combler les vides entre la pièce à fixer et le béton
- · Expansion à couple contrôlé

 La cheville HSL-GR ne tournera pas pendant l'application du couple de serrage.

Clauses de cahier de charges

Chevilles à expansion La cheville en acier inoxydable HSL-GR comprend une tige filetée, un manchon, une gaine d'expansion un cône d'expansion, un manchon déformable en plastique, un écrou et une rondelle. Tous les composants en acier inoxydable sont conformes au type 316 de l'AISI. La cheville choisie est une cheville à expansion à couple contrôlé fabriquée par Hilti.

3.3.3.2 Spécifications matérielles

Tige filetée en acier inoxydable conforme à DIN 267, type A4-70, f_{va} = 65 ksi, f_{uta} ≥ 102 ksi.

Gaine d'expansion en acier inoxydable conforme à DIN 17440, f_{uta} ≥ 102 ksi.

Cône en acier inoxydable conforme à DIN 17440, f_{uta} ≥ 102 ksi.

Rondelle en acier inoxydable conforme à DIN 17441, 74 ksi ≤ f_{uta} ≤ 103 ksi.

Écrou en acier inoxydable conforme à DIN 934.

Manchon déformable en résine acétal.

3.3.3.3 Fiche technique

Tableau 1 - Spécifications des HSL-GR en acier inoxydable de Hilti

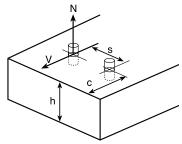
Données sur			Diamètre nominal de cheville			
la pose	Symbole	Unités	M10	M12	M16	M20
Diamètre nominal de la mèche	d _{bit}	mm	15	18	24	28
Profondeur		mm	75	80	105	130
d'ancrage nominale minimale	h _{nom}	(po)	(3)	(3 3/16)	(4 1/8)	(5 1/8)
Profondeur de trou	h	mm	85	100	125	150
minimale	h _{nom}	(po)	(3 3/8)	(4)	(5)	(6)
Diamètre du trou	٦	mm	17	20	26	31
de la pièce à fixer	d _h	(po)	(11/16)	(13/16)	(1 1/16)	(1 1/4)
Épaisseur maximale		mm	20	25	25	30
de la pièce à fixer	t _{fix}	(po)	(3/4)	(1)	(1)	(1 1/8)
Couple		Nm	50	80	120	200
d'installation	T _{inst}	(pi-lb)	(37)	(59)	(89)	(148)
Taille de la clé		mm	17	19	24	30
Épaisseur minimale		mm	140	160	180	220
du support en béton	h	(po)	(5 1/2)	(6 1/4)	(7)	(8 3/4)

Taille de cheville

M10

M12

M16


M20

réelle

standard

Chevilles pour charges élevées HSL-GR en acier inoxydable 3.3.3

Directives relatives à l'espacement et à la distance de rive des chevilles

mm

75

80

105

130

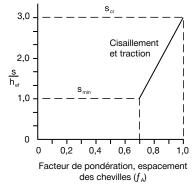
profondeur d'ancrage

profondeur d'ancrage

(po)

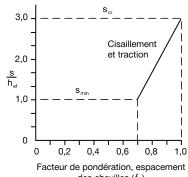
(3)

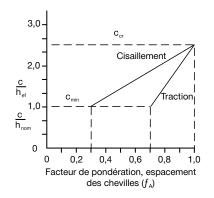
 $(3\ 3/16)$


(4 1/8)

(51/8)

Facteurs de pondération, espacement


s = Espacement réel


 $s_{min} = 1,0 h_{nom}$ $s_{cr} = 3.0 h_{ef}$

Facteurs de pondération, distance de rive

c = Distance de rive réelle $c_{min} = 1.0 h_{nom}$ Traction $c_{cr} = 2.5 h_{ef}$ $c_{min} = 1.0 h_{nom}$ Cisaillement $c_{r} = 2.5 h_{nom}$

Facteur	s de pondé	ration de	charge ((espacen	nent) f_A	Facteurs de pondération de charge (distance de rive) $f_{\scriptscriptstyle m R}$									
	Trac	ction/Cis	aillement	į				Traction $f_{_{\mathrm{BN}}}$				Cisaillement $f_{_{\mathrm{BV}}}$			
Espac	ement, s		Diamètre (de chevil	le	Distance	e de rive, c		Diamètre (de chevil	le)iamètre	de chevil	le
mm	(po)	M10	M12	M16	M20	mm	(po)	M10	M12	M16	M20	M10	M12	M16	M20
65	(2 1/2)					65	(2 1/2)								
75	(3)	0,70				75	(3)	0,70				0,30			
80	(3 1/8)	0,71	0,70			80	(3 1/8)	0,71	0,70			0,33	0,30		
105	(4 1/8)	0,76	0,74	0,70		105	(4 1/8)	0,78	0,76	0,70		0,48	0,44	0,30	
130	(5 1/8)	0,81	0,79	0,73	0,70	130	(5 1/8)	0,85	0,83	0,74	0,70	0,64	0,59	0,41	0,30
155	(6 1/8)	0,86	0,84	0,77	0,72	155	(6 1/8)	0,91	0,88	0,79	0,73	0,80	0,74	0,52	0,39
175	(6 7/8)	0,90	0,87	0,80	0,75	162	(6 3/8)	0,93	0,90	0,80	0,75	0,84	0,78	0,55	0,41
195	(7 5/8)	0,94	0,91	0,82	0,77	187	(7 3/8)	1,0	0,96	0,85	0,78	1,0	0,92	0,66	0,50
225	(8 7/8)	1,0	0,97	0,87	0,80	200	(7 7/8)		1,0	0,88	0,80		1,0	0,72	0,55
240	(9 3/8)		1,0	0,89	0,82	225	(8 7/8)			0,92	0,84			0,83	0,64
275	(10 3/4)			0,94	0,86	265	(10 3/8)			1,0	0,91			1,0	0,79
315	(12 3/8)			1,0	0,91	275	(10 3/4)				0,92			1,0	0,82
350	(13 3/4)				0,95	300	(11 3/4)				0,96				0,91
395	(15 1/2)				1,0	325	(12 3/4)				1,0				1,0
430	(17)					350	(13 3/4)								
470	(18 1/2)					390	(15.3/8)								

$$s_{\min} = 1.0 \ h_{\text{nom}} \quad s_{\text{cr}} = 3.0 \ h_{\text{ef}}$$

$$c_{\min} = 1.0 \ h_{\text{nom}} \quad c_{\text{cr}} = 2.5 \ h_{\text{ef}}$$

$$c_{\min} = 1.0 \ h_{\text{nom}} \quad c_{\text{cr}} = 2.5 \ h_{\text{nom}}$$

$$f_{\text{RN}} = 0.15 \ \frac{s}{h_{\text{ef}}} + 0.55$$

$$f_{\text{RN}} = (0.30) \ \left(\frac{c - 1.0 \ h_{\text{nom}}}{2.5 \ h_{\text{ef}} - 1.0 \ h_{\text{nom}}} \right) + 0.70$$

$$f_{\text{RV}} = 0.47 \ \frac{c}{h_{\text{nom}}} - 0.17$$

$$pour \ s_{\text{cr}} > s > s_{\text{min}}$$

$$pour \ c_{\text{cr}} > c > c_{\text{min}}$$

$$pour \ c_{\text{cr}} > c > c_{\text{min}}$$

3.3.3 Chevilles pour charges élevées HSL-GR en acier inoxydable

Tableau 2 - Charges admissibles de la cheville HSLG-R en acier inoxydable de Hilti dans le béton de densité normale1

	Profondeur	f' c = 2	f' c = 2 000 psi		f' _c = 3 000 psi		f' _c = 4 000 psi		f' c = 6 000 psi	
Diamètre nominal de cheville	d'ancrage nominale mm (po)	Traction kN (lb)	Cisaillement kN (lb)	Traction kN (lb)	Cisaillement kN (lb)	Traction kN (lb)	Cisaillement kN (lb)	Traction kN (lb)	Cisaillement kN (lb)	
M10	75	6,8	13,7	9,1	14,8	11,5	15,8	11,5	16,4	
IVITO	(3)	(1 535)	(3 090)	(2 055)	(3 325)	(2 575)	(3 560)	(2 595)	(3 690)	
M10	80	8,7	20,2	11,3	21,8	13,8	23,3	17,5	25,0	
M12	(3 3/16)	(1 960)	(4 540)	(2 530)	(4 890)	(3 105)	(5 245)	(3 925)	(5 615)	
Mac	105	17,6	34,7	20,9	39,9	24,2	45,0	30,7	46,9	
M16	(4 1/8)	(3 965)	(7 805)	(4 705)	(8 965)	(5 450)	(10 125)	(6 900)	(10 550)	
M20	130	25,1	52,9	30,7	58,7	36,4	64,5	44,5	64,5	
IVIZU	(5 1/8)	(5 650)	(11 900)	(6 910)	(13 195)	(8 175)	(14 490)	(10 005)	(14 490)	

¹ Charges admissibles calculées en utilisant un coefficient de sécurité de 3,5.

Tableau 3 - Charges de rupture des chevilles HSLG-R en acier inoxydable de Hilti dans le béton de densité normale

	Profondeur	f' c = 2	2 000 psi	f'c = 3	3 000 psi	f' c = 4	4 000 psi	f' c = 6	6 000 psi
Diamètre nominal de cheville	d'ancrage nominale mm (po)	Traction kN (lb)	Cisaillement kN (lb)						
M10	75	23,8	47,8	31,9	51,6	40,0	55,2	40,3	57,3
IVITO	(3)	(5 350)	(10 785)	(7 165)	(11 595)	(8 985)	(12 410)	(9 055)	(12 880)
M12	80	30,4	70,5	39,3	75,9	48,2	81,4	60,9	87,1
IVI I Z	(3 3/16)	(6 830)	(15 845)	(8 830)	(17 070)	(10 835)	(18 300)	(13 700)	(19 590)
M1G	105	61,6	121,1	73,0	139,1	84,5	157,1	107,0	163,7
M16	(4 1/8)	(13 840)	(27 220)	(16 420)	(31 270)	(19 005)	(35 320)	(24 065)	(36 800)
M20	130	87,7	184,7	107,3	204,7	126,9	224,8	155,3	224,8
IVIZU	(5 1/8)	(19 715)	(41 510)	(24 115)	(46 025)	(28 520)	(50 540)	(34 910)	(50 540)

Charges combinées de cisaillement et de traction

$$\left(\frac{N_{d}}{N_{rec}}\right)^{5/3} + \left(\frac{V_{d}}{V_{rec}}\right)^{5/3} \le 1,0$$

3.3.3.4 Directives d'installation

Le mode d'emploi relatif à l'installation est fourni avec chaque emballage. Il est consultable ou téléchargeable en ligne sur le site www.hilti.com. Étant donné que des modifications peuvent avoir été apportées au document, toujours s'assurer que l'IFU téléchargé est en vigueur au moment de son utilisation. Il est essentiel que l'installation soit bien faite pour obtenir un rendement optimal. Une formation est offerte sur demande. Communiquez avec les services techniques de Hilti lorsque les applications et les conditions ne sont pas mentionnées dans l'IFU.

3.3.3.5 Renseignements sur les commandes

Cheville à expansion pour charges élevées en acier inoxydable (31655)

Description	Qté/bte
M 10/20	20
M 12/25	20
M 16/25	10
M 20/30	6

Cheville à expansion avec filetage intérieur HSL-I 3.3.4

3.3.4.1 Description du produit

La cheville HSL-I M12 65/80 a été conçue pour la fixation d'armoires et de supports de câbles (télécommunications). La cheville peut être installée à une faible profondeur d'ancrage de 65 mm pour la fixation de dalles minces de béton ou à une profondeur de 80 mm afin d'obtenir une capacité de traction supérieure. Il est possible d'utiliser un manchon espaceur de 15 mm lorsque la cheville est installée à une profondeur de 80 mm afin de maximiser le rendement de cisaillement.

La cheville à expansion avec filetage intérieur est posée avant l'installation du support ou de l'armoire. Une fois cet équipement installé par-dessus la douille HSL-I M12, le goujon est inséré dans le trou de la pièce à fixer et enfilé dans la cheville à expansion. L'écrou dynamométrique est ensuite utilisé pour effectuer le serrage au couple d'installation. Puisque l'écrou hexagonal exposé se libère au couple d'installation approprié, il n'est pas nécessaire d'utiliser une clé dynamométrique. L'écrou inviolable permanent est recouvert d'un manchon de plastique rouge. Ce manchon rouge permet de vérifier, au moyen d'une inspection visuelle rapide, si l'écrou n'a pas été desserré ou serré.

Caractéristiques du produit

- A réussi l'essai de qualification des normes d'essai NEBS GR-63-CORE pour des zones de sismicité 4 de Telcordia.
- Capacité de charge élevée dans les dalles minces
- Expansion à couple contrôlé

Clauses de cahier de charges

Chevilles à expansion La cheville à expansion HSL-I M12 65/80 à filetage intérieur en acier ordinaire comprend une gaine d'expansion, un cône, un manchon espaceur, une tige filetée, un écrou dynamométrique et une rondelle. La cheville choisie est une cheville à expansion à couple contrôlé fabriquée par Hilti.

3.3.4.1	Description du produit
3.3.4.2	Composition
3.3.4.3	Données techniques
3.3.4.4	Directives d'installation
3.3.4.5	Renseignements sur
	les commandes

Cheville HSL-I M12 65/80 conçue pour une profondeur d'ancrage de 65 mm

3.3.4.2 Spécifications matérielles

Boulon ou tige filetée en acier ordinaire conformes à ISO 898-1, nuance 8.8, $f_{ya} \ge 93$ ksi, $f_{uta} \ge 116$ ksi.

Gaine d'expansion en acier ordinaire conforme à DIN 2393, nuance ST-52-3.

Écrou en acier ordinaire conforme à DIN 934, nuance 8, f_{uta} ≥ 116 ksi.

Cône en acier ordinaire conforme à DIN 1654, type CQ35, f_{uta} ≥ 87 ksi.

Rondelle en acier ordinaire conforme à DIN 1544, nuance ST37, f_{uta}≥ 91 ksi.

3.3.4 Cheville à expansion avec filetage intérieur HSL-I

3.3.4.3 Fiche technique

Tableau 1 - Spécifications des HSL-I M12 65/80 de Hilti

Données sur la pose	Symbole	Unités	HSL-I M	12 65/80	
Diamètre nominal de la mèche	d _{bit}	mm	1	8	
Profondeur d'ancrage nominale		mm	65	80	
minimale	h _{nom}	(po)	(2 9/16)	(3 3/16)	
Profondeur de trou minimale	h	mm	80	95	
Profondeur de trou minimale	h _{nom}	(po)	(3 3/16)	3 3/4	
Diamètre du trou de la pièce à	d _h	mm	14		
fixer		(po)	(9/16)		
Épaisseur maximale de la pièce		mm	40	25	
à fixer	t _{fix}	(po)	(1 9/16)	(1)	
Counts dinetallation	_	Nm	8	0	
Couple d'installation	T _{inst}	(pi-lb)	(6	0)	
Taille de la clé		mm	1	9	
Épaisseur minimale du support	h	mm	115	130	
en béton	11	(po)	(4 1/2)	(5)	

Figure 1 – Spécifications des HSL-I M12 65/80^{1,2}

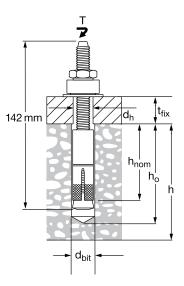


Tableau 2 – Charges admissibles des chevilles HSL-I M12 de Hilti dans le béton de densité normale à 4 000 psi¹

Description	Longueur de cheville mm	Profondeur d'ancrage nominale mm	Traction lb	Cisaillement Ib
HOL IM10 65/00	113	65	2 335	2 265
HSL-I M12 65/80	130	80	3 150	2 350

¹ Charges admissibles calculées en utilisant un coefficient de sécurité de 4:1.

- La figure illustre une profondeur d'ancrage de 65 mm.
- 2 Configuration de l'écrou dynamométrique avant l'application du couple de serrage

Charges combinées de cisaillement et de traction

$$\left(\frac{N_d}{N_{max}}\right)^{5/3} + \left(\frac{V_d}{V_{max}}\right)^{5/3} \le 1.0$$

3.3.4.4 Directives d'installation

Le mode d'emploi relatif à l'installation est fourni avec chaque emballage. Il est consultable ou téléchargeable en ligne sur le site www.hilti.com. Étant donné que des modifications peuvent avoir été apportées au document, toujours s'assurer que l'IFU téléchargé est en vigueur au moment de son utilisation. Il est essentiel que l'installation soit bien faite pour obtenir un rendement optimal. Une formation est offerte sur demande. Communiquez avec les services techniques de Hilti lorsque les applications et les conditions ne sont pas mentionnées dans l'IFU.

3.3.4.5 Renseignements sur les commandes

HSL-I M12 65/80

Description	Qté/bte
HSL-I M12 65/80	20